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Abstract

Incorporating nonspatial variables into spatial models is of increasing importance, especially when
studying policing. Experts propose ways of combining spatial and nonspatial data into spatial models,
such as the k-Groups model [Quick et al., 2015] and the Two-Stage model [Kelling and Haran, 2022].
We explain existing methods in spatial statistics, and compare and contrast the two selected strategies.
Utilizing a police use of force data set from Minneapolis, Minnesota, we use computational tools such
as predictive processes and Bayesian computing to estimate model parameters. The k-Groups method
models use of force incident intensity as a function of spatial variables differentiating between each
combination of categorical nonspatial variables. The Two-Stage method models (1) the spatial use
of force incident intensity and (2) the probability of our mark (weapon or no weapon) influenced by
nonspatial and spatial variables, and their interaction. Finally, we discuss the benefits and drawbacks of
each method.
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1 Introduction

Excessive use of force by law enforcement is a cause of great concern across the United States. There is often
a lack of transparency and accountability from law enforcement Geller et al. [2021], and the disclosure of
comprehensive policing data to the public has been more sought after than ever. Incorporating information
about the individuals involved in policing events into spatial models could allow for a greater understanding
of police use of force. We define this as ‘nonspatial’ information, available either by individuals, such as
officers/civilians, or by events, as opposed to spatial information that is defined in the space where an event
happened. Through the use of this information, we may be able to gain insight into patterns or potential
biases in law enforcement interactions. Additionally, nonspatial data can create a more complete picture of
police-civilian interactions. For instance, simply examining use of force incidents does not explore whether
the frequency of incidents is due to civilian behavior or officer misconduct [Fryer, 2019].

Community characteristics have been investigated to explain policing information. Previous research
has found that marginalized communities are more likely to have police present in their neighborhoods
[Lersch et al., 2008]. To investigate this relationship, it is necessary to consider spatial information that
provides insight into a neighborhood’s socioeconomic and diversity status. Spatial modeling is another way
to incorporate community characteristics into models describing policing data. For example, Kelling and
Haran [2023] analyzed police use of force and police stops in Chicago, estimating the likelihood of observing
one of these events across the city based on census tract unemployment rates, measure of diversity, and
median age.

In addition, individual-level characteristics have been used when analyzing policing data. When investi-
gating these individual attributes, we find that police departments have a large level of discretion when it
comes to how much detail they include in their data released to the public, as well as how often they release
this data [Geller et al., 2021]. For example, lethal use of force events are often the type for which data are
most consistently collected due to its severity [Geller et al., 2021]. Information regarding lower-level instances
of force, which occur more often than officer-involved shootings, is difficult to find [Fryer, 2019]. However,
lower-level instances of force can still have a large impact and are worth exploring especially considering
their frequency and thus impact on every-day life [Fryer, 2019].

While scholars have raised concerns based on lived experiences about disparities in policing practices by
race, there remains little systematic understanding on how criminologists and other experts should analyze
the impact of race[Obasogie and Provenzano, 2023]. In Wright and Headley [2020], it was explored whether
the race of the civilian and race of the officer had an impact on the level of force used by police. It was found
that white officers were more prone to use higher levels of force against Black civilians. Similarly, Smith
et al. [2023] discovered that Black civilians encountered greater force severity and a larger total amount of
force compared to white civilians within a large county police agency. Moreover, Maksuta et al. [2024] found
relationships between changes in racial/ethnic minority proportions in neighborhoods and police-involved
homicides, as well as associations with measures of social disorganization. In contrast, it was found that
civilian resistance was not a discernible predictor of force, though this contradicts some previously existing
findings [Smith et al., 2023]. Other research in the field has examined the relationship between officer race
and predicting police use of force and civilian resistance, such as Paoline et al. [2018]. Due to the results
of the studies investigating police use of force, there is a strong desire for supervision of law enforcement
actions [Fryer, 2019]. Minneapolis has been at the lead of many of these discussions following the events that
have occurred over the past few years, especially the murder of George Floyd by Minneapolis police [Smith,
2022].

In this analysis, we build upon the work by Liang and Carlin [2008], which devised new methods for
estimating spatial models, by reviewing different statistical methods that incorporate nonspatial information
into spatial models. We also analyze data on Minneapolis Policing Districts, Police Use of Force [Open
Data, 2024], and information from the American Community Survey [Census Data, 2021] to both generate
a thorough analysis and visualization of Minneapolis Police Use of Force data as well as integrate nonspatial
information into spatial models. We make initial conclusions regarding the relationship between police use of
force events and nonspatial information. Finally, we compare two models, the k-Groups model developed by
Quick et al. [2015] and the Two-Stage model proposed by Kelling and Haran [2022], to explore the similarities
and differences regarding what can be said by each of the two models, and consider computational challenges
that must be overcome in the process.
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We will begin with outlining the methodology for modeling point process data, found in Section 2. This
includes discussions of complete spatial randomness in Section 2.1 and both the Nonhomogeneous Poisson
Process in Section 2.2 and the Log Gaussian Cox Process in Section 2.3 as modeling options that allow the
spatial intensity to vary. We then outline the computational details proposed by Liang and Carlin [2008]
which include utilizing predictive processes to help alleviate computational challenges and Markov Chain
Monte Carlo methods to estimate parameters in Section 2.3.1. We then explore how both the k-Groups
model and the Two-Stage model incorporate nonspatial data, found in Section 2.4. Then, we investigate an
application of these methods using a police use of force data set from Minneapolis, Minnesota, described in
Section 3. Finally, we share the results of our analyses in Section 4, compare the two models in Section 4.4,
and discuss limitations and potential next steps in Sections 5.1 and 5.2 respectively.

2 Methodology for Modeling Point Processes

In this section, we will begin with the definition of a point process, as well as complete spatial randomness
(CSR). Next, we will outline the types of point process models that we consider, their motivations, and
computational considerations. Then, we will describe two ways that past researchers have incorporated
nonspatial data into spatial models.

2.1 Complete Spatial Randomness

A point process consists of individual events s1, s2, ...sn (n= total number of events) at specified locations
within a spatial domain or window, W [Bivand et al., 2013]. These points can be completely spatially random
(CSR) or form other spatial patterns. In order to test whether the data is completely spatially random, we
compute and analyze the G and F functions for the point process dataset [Bivand et al., 2013].

The G function can determine whether a point process is completely spatially random by first computing
the nearest neighbor distance of each event. The nearest neighbor is defined as the event j with the shortest
distance d from event i (dij ≤ dik∀k). For the G function, we plot a cumulative distribution function (CDF)
of these distances as a summary visualization of the nearest neighbor distances [Bivand et al., 2013]. We
can test for CSR by comparing the CDF of the police use of force (our dataset considered in this paper)
nearest neighbor distances to simulations of point processes with the same number of points and the same
spatial domain simulated under CSR. If nearest neighbor distances are smaller for the use of force dataset,
as summarized by the G function, compared to the CSR simulations, then there is preliminary evidence of
clustering, and against CSR. The CDF of clustered data would thus be to the left of the CSR envelope,
which summarizes many CSR simulations [Bivand et al., 2013].

The F function can also determine whether a point process is completely spatially random, but the first
step is to define an arbitrary set of points in the spatial window. We then calculate the distance between
each arbitrary point and its nearest event (police use of force incident) in the dataset to create a CDF, and
compare this to simulations of point processes under CSR [Bivand et al., 2013]. If nearest neighbor distances
are larger for the dataset, then there is more blank space in the police use of force dataset, meaning we
have evidence that the dataset does not follow CSR but rather shows evidence of clustering. The CDF of
clustered data would thus be to the right of the CSR envelope, again summarizing many instances of CSR
[Bivand et al., 2013].

If the data exhibits CSR, then an implied model for the data is the Homogeneous Poisson process (HPP),
where the number of events in the window with area |W | is Poisson distribution with mean λ ∗ |W |, and
λ represents the constant intensity of the point process model [Bivand et al., 2013]. If the data shows
evidence against CSR, then this motivates modeling the data with other point process models such as the
Nonhomogeneous Poisson Process (NHPP) or the Log Gaussian Cox Process (LGCP), where the intensity
is allowed to vary over the spatial domain [Bivand et al., 2013].

2.2 Nonhomogeneous Poisson Process

When the data does not exhibit CSR, this motivates the use of a model that allows the spatial intensity to
vary. One preliminary option is a model called the Nonhomogeneous Poisson Process (NHPP), which is a
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generalization of the HPP [Bivand et al., 2013]. As illustrated by Bivand et al. [2013], the spatial intensity
under this model follows Equation 1.

log (λ(s)) = x(s)′β (1)

In Equation 1, s is the location of an event, x(s) is the vector of spatial covariates at each location s, and β is
the vector of coefficients, which are then estimated from the data, for the spatial variables. The assumptions
for this model are that the points follow a Poisson distribution with mean

∫
W

λ(s)ds, and the n events in
W form an independent random sample from the distribution on W with pdf proportional to λ(s) [Diggle,
2009].

While it is possible to estimate a spatial intensity of a point process non-parametrically via kernel smooth-
ing, an alternative approach is to estimate the spatial intensity parametrically utilizing the maximization of
the likelihood function of an NHPP [Bivand et al., 2013]. The log-likelihood of a realization of independent
events from an NHPP is shown in Equation 2, where each si is the individual event and λ(s) is the spatial
intensity of an NHPP, defined above [Bivand et al., 2013].

L(λ) ∝
n∑

i=1

log (λ(si))−
∫
W

λ(s)ds (2)

The NHPP model can be useful when considering relatively simple spatial data, but complications arise
when working with more complex data due to the model’s limiting attribute that the estimated intensity
is regionally constant when considering spatial covariates that are defined on areal units [Liang and Carlin,
2008]. For example, the estimated intensity in Equation 1 is regionally constant because the spatial variables,
x(s), come from census data, where there is only one value per census unit such as census tracts. In practice,
it is rare to find situations where the spatial intensity is regionally constant over an areal unit, such as
a census tract, and then immediately changes to a new intensity at a neighboring census tract. A more
common scenario is one in which there is a smoother spatial intensity, which can be modeled by the Log
Gaussian Cox Process.

2.3 Log Gaussian Cox Process

The spatial intensity of an LGCP, defined in Equation 3, is very similar to the NHPP intensity but includes
an additional term, ω(s) Liang and Carlin [2008], which represents a Gaussian Process (GP).

log (λ(s)) = x(s)′β + ω(s) (3)

A Gaussian Process, ω(s) has the distribution defined in Equation 4.

ω(s) ∼ MVN(0,Σ) (4)

The ω(s) defined in Equation 4 is a column vector, fully represented in Equation 5.á
ω(s1)
ω(s2)

...
ω(sn)

ë
(5)

Existing methods consider many possibilities for modelling the covariance for the Gaussian Process, such
as the structure defined in Equation 6 [Stephens, 2020].

Σij = cov(ω(si), ω(sj)) = σ2exp

Å−|si − sj |
ϕ

ã
(6)

The parameter σ2 represents the scale, ϕ represents the smoothness, and |si− sj | represents the distance
between any two events, si and sj . The additional Gaussian Process term in an LGCP allows the spatial
intensity to vary within areal units, such as the census tracts, because the GP is continuous.

The formula for the log-likelihood of an LGCP does not differ from the formula for the log-likelihood
of an NHPP shown in Equation 2, except the intensity function defined there now includes the GP [Liang
and Carlin, 2008]. To maximize the log-likelihood for the LGCP, it is necessary to utilize the computational
techniques summarized in the following section.
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2.3.1 Computational Details

We utilize a Bayesian approach to estimate the parameters of the log Gaussian Cox process, β and σ. In
a Bayesian approach, we start with a prior distribution and then utilize data that is collected to form a
posterior distribution. This can be seen in Bayes’ theorem in Equation 7

P (β | data) = P (data | β)× P (β)

P (data)
(7)

Bayes’ theorem allows us to estimate parameters, β and σ in the case of the LGCP, given data. The left
side of Equation 7 represents the posterior distribution, which is what we are attempting to estimate. The
component P (data | β) in Equation 7 represents the likelihood. P (β) is the prior distribution. The prior
distribution is what is assumed before viewing the data. Priors can be relatively uninformative or based
on previous information. Still, the denominator of Bayes’ theorem can be difficult to compute, so we used
Markov Chain Monte Carlo (MCMC) estimation in the NIMBLE R package [de Valpine et al., 2017]. This
package allows users to compile code into C++ for fast computation as well as implement the maximization
of customized log-likelihood functions easily.

When implementing NIMBLE R code, as done in de Valpine et al. [2017], it is best to fix either σ or ϕ
in Equation 6 to due to identifiability concerns in the estimation of the parameters of the GP covariance
function. In our application, we chose to fix ϕ as done in Liang and Carlin [2008] such that the 95th
percentile of distances have a correlation of 0.05 and the value of the 5th percentile of distances have a
correlation of 0.95. We fix ϕ at the average of these two values. The priors for our regression coefficients, β,
follow a Normal(0,100) distribution. As done in Liang and Carlin [2008], we use an Inverse-Gamma(α = 2,
β = 0.5) prior for σ. Finally, we need to estimate the Gaussian Process at each event in the data in order
to calculate the first component of Equation 2. However, the dimensions for Σ are too large given that
matrix multiplication and inversion are required to estimate a Gaussian Process. Therefore, we use knots,
or lower resolution points, to estimate the Gaussian Process at the locations of the data. The choice for the
knots used in our application is found in Appendix B. Our prior for these Gaussian Process values at lower
resolution points follows a Multivariate Normal Distribution.

Because we estimated the Gaussian Process in a low resolution, we must use predictive processes to
transform the low-resolution Gaussian Process values on the knots into a higher resolution [Banerjee et al.,
2008]. Equation 8 demonstrates this process, where ω̃(s) is the estimated Gaussian Process over higher
resolution points (such as the locations of the data). The matrix cov(ω(s), ω∗) is the covariance matrix
between the higher and lower resolution points, var−1(ω∗) is the inverse of the covariance matrix between
the lower resolution points, and ω∗ is the estimated Gaussian Process values on points in a lower resolution.

ω̃(s) = cov(ω(s), ω∗)var−1(ω∗)ω∗ (8)

Next, to maximize the log-likelihood function, it is necessary to integrate the intensity over the spatial
domain in order to compute

∫
W

λ(s)ds. Functionally, this integral must be estimated, so we utilize Monte
Carlo integration. Monte Carlo integration is an estimation technique that evaluates integrals through
simulations, shown in Equation 9, where sint,i represents randomly generated integration points across the
spatial domain W . A discussion of how the integration points were generated for our application can be
found in Appendix B. The intensity is calculated at each integration point, and the average intensity is
determined by summing the calculated intensity at each integration point and dividing by the total number
of integration points. The final step in estimating

∫
W

λ(s)ds through Monte Carlo integration is to multiply
the average intensity by the area of the spatial domain. Note that to estimate λ(sint,i) over the integration
points, we also apply a predictive process transformation to estimate the Gaussian Process at the integration
points. ⁄�∫

W

λ(s)ds =
Area

nint

nint∑
i=1

λ(sint,i) (9)

The Markov chain portion of MCMC Bayesian estimation involves maximizing the likelihood function
over many iterations of different model values. First, we choose initial values for our model parameters
(β’s, σ, Gaussian Process on knots), then propose a new value for each parameter based on their respective
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(relatively uninformative) prior distributions, then either accept or reject each proposed value based on
how probable the proposed value is. More specifically, the process utilizes the Metropolis algorithm when
proposing a new value, which involves computing the ratio of the probability of the proposed value given the
observed data to the probability of the existing value given the observed data. If this ratio is greater than 1
- or in other words, if the probability of the new value is greater than the probability of the old value - then
the new value is accepted. If the ratio is less than 1, the new value is accepted with probability equal to
the ratio of the two aforementioned probabilities. Over thousands, hundreds of thousands, or even millions
of iterations, the estimates for all parameters should begin to converge, changing less severely and even less
frequently as the likelihood slows its increase; the MCMC trace plots for each parameter will reflect this and
can be used to visually assess for convergence. After convergence has been established, the period of burnin -
the part of the MCMC chain before the estimates converge - can be identified and removed. Once the burnin
is removed, credible intervals for each model parameter are calculated by finding the quantile estimates of
the posterior distribution after removing burnin, and the mean of these values serve as estimates of the true
values.

2.4 Incorporating Nonspatial Data

The study of incorporating nonspatial data into point process analysis is a current and pressing area of
research. One of the primary goals of our research is to assess existing methods of incorporating nonspatial
data and determine the types of questions that can/cannot be answered with the existing methods. The two
main methods we analyzed are the k-Groups method developed by Quick et al. [2015] and the Two-Stage
method developed by Kelling and Haran [2022].

2.4.1 k-Groups Method

Quick et al. [2015] outlines one method for incorporating categorical nonspatial variables in which there is
a separation of observations into k groups based on the characteristics of interest. For example, let the
two categorical variables of interest be binary sex (male or female) and binary race (white or non-white).
Then, group k1 would include all observations where the individuals are white male, k2 would include all
observations where individuals are non-white male, k3 would include all observations where the individuals
are white female, and k4 would include all of the observations where the individuals are non-white female.
Following the designation of k groups, Quick et al. [2015] proposes the utilization of an LGCP very similar
to the model described in Section 2.3. The equation for the log-likelihood of the realization of independent
events used by Quick et al. [2015] is defined in Equation 10, where log (λk(s)) = xk(s)

′βk + wk(s).

L(λk) ∝
n∑

i=1

log (λk(si))−
∫
W

λk(s)ds (10)

The β coefficients for the spatial variables of interest are estimated for each k-group as described in
Section 2.3.1. To investigate the impact of the nonspatial variables, we compare how the β coefficients differ
across the k groups [Quick et al., 2015]. However, it is important to note we used a simplification of the
method proposed by Quick et al. [2015] in that we assumed independence between the k-Groups and we
only worked with incorporating categorical variables. Information on incorporating dependence between
k-Groups can be found in Appendix A.

2.4.2 Two-Stage Method

A second approach that we consider to incorporate nonspatial data into spatial models is developed by Kelling
and Haran [2022]. The proposed model does not separate the data by the categorical variables of interest.
Instead, the analysis is split into two different stages. The first stage utilizes an LGCP model to estimate
the spatial intensity of the events based on spatial variables as described in Section 2.3. The second stage,
referred to as the mark determination stage, utilizes regression analysis to determine the distribution of the
mark using both spatial and nonspatial data [Kelling and Haran, 2022]. A mark is the nonspatial outcome
variable that the researchers wish to explain. For our policing application, we chose a binary mark, which
is best modeled using logistic regression. A general logistic regression function for the mark determination
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stage is shown in Equation 11, where π(s) is the probability of the reference mark, x(s) is the vector of spatial
covariates, γ is the vector of coefficients for the spatial variables, ν is the vector of nonspatial variables, α is
the vector of coefficients for the nonspatial variables, and δ is the vector of coefficients for interaction terms
between the spatial and nonspatial variables.

logit(π(s)) = x(s)′γ + ν′α+ (x(s)′ν)δ (11)

It is important to note, however, that this is a simplification of the Two-Stage model for two main reasons.
First, the type of mark determines the link function for the regression model that is used, which changes
the likelihood function. For example, when working with a mark consisting of counts, one might want to
utilize Poisson regression instead of logistic regression [Kelling and Haran, 2022]. Second, as described in this
section, each stage of the Two-Stage process considered in this paper is treated independently. However, the
full Two-Stage model described by Kelling and Haran [2022] allows for dependence between the two stages
through the utilization of Gaussian Processes, ω1(s) and ω2(s), in each stage of the model. See Appendix A
for more information on incorporating dependence between the stages.

3 Data

This project focused on data from two sources. First, we utilize data collected by the Minneapolis Open Data
Portal, including Minneapolis Policing Districts and Police Use of Force [Open Data, 2024]. The Minneapolis
Policing Districts dataset contains the spatial shapefile information for the shapes of the police districts for
Minneapolis. Second, we include American Community Survey data collected and published by the Census
Bureau [Census Data, 2021].

The original Police Use of Force dataset contained 39,758 observations with 30 variables. These variables
included the anonymized latitude and longitude coordinates of police use of force incidents, the date of the
incident (beginning in January 2008 and ending in December 2022), the type of force used on the civilian,
the type of resistance by the civilian, and the race of the civilian. It is important to note that we are unsure
as to how Latine civilians were categorized in the police use of force data. This population may have been
categorized as white, Other/Mixed Race, or Unknown, so our analysis is limited. In addition, while we are
unsure how the coordinates were anonymized because the Minneapolis Police Department has not formally
documented their privatization process, it is likely that coordinates within a block are moved to the midpoint
of the block, as supported by visual inspection in Figure 1. An assumption of point process models is that
points are non-overlapping. Therefore, we slightly jittered the overlapping points in the dataset so that there
were no repeated locations of police use of force incidents.
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Figure 1: Original Use of Force Incidents at Anonymized Locations

It is necessary to consider how changes in data collection or reporting practices can impact this dataset.
Figure 2 shows the total counts of Minneapolis use of force incidents over the entire range of dates, grouped
by month. Though quite variable on a month-to-month basis, there appears to be a general trend of higher
incident counts in earlier years, followed by slightly decreased counts from around 2012 to 2019, finally
followed by a sharp increase in 2020, which is suspected to be a result of increased scrutiny following the
murder of George Floyd in May 2020 and changes in data practices [Smith, 2022]. As we did not find this
plot to be strongly indicative of a distinct change in practices, we chose to cut off the use of force data so
that dates ranged from 2018 onward.

Figure 2: Use of Force Incident Count by Month

Finally, the original American Community Survey dataset contained information about 329 census tracts
in Hennepin County, Minnesota. We collected the variables for the total population (shown in Figure 3 at
a county level), number of people unemployed, number of people in the civilian labor force, white alone
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population, Black alone population, American Indian or Alaskan alone population, Asian alone population,
Hawaiian alone population, Other race alone population, and two or more races alone population. We then
calculated the unemployment rate as the number of unemployed people divided by the civilian labor force,
as well as the Herfindahl-Hirschman index (HHI), calculated as defined below:

HHI =
Race 1 Count

Total Population

2

+
Race 2 Count

Total Population

2

+ ...+
Race n Count

Total Population

2

The HHI is a measure of diversity, with a value close to 1 corresponding to an areal unit with low diversity.
This occurs because the proportion of the race counts relative to total population will have a value close to
1, making its square close to 1. A value close to 0 corresponds to an areal unit with high diversity because
the proportion of the race counts relative to total population for each race will all be closer to 0, and adding
their squares together will produce a value closer to 0.

Figure 3: Map of Total Population by Census Tract

3.1 Pre-processing

The first part of processing the data was to narrow down the census tracts to include only census tracts in
the police district. However, the census tract boundaries and police district boundaries do not completely
align. Therefore, we calculated the percentage of overlap between the census tracts and the police districts.
We then removed all census tracts that did not have at least 70 percent coverage by the police districts from
our American Community Survey dataset. We were left with 121 census tracts.

Next, we merged the finalized census tracts dataset with our Police Use of Force dataset so that each
use of force incident was affiliated with a census tract and its corresponding spatial covariates. We excluded
some use of force incidents that were not in the 121 census tracts and were not near the boundary of these
tracts. We also moved some points that were near the boundary back into the census tracts because the
anonymization process may have changed where the true observation occurred. The most that a point was
moved was 427 feet. Figure 4 displays the original and moved points. Our final dataset included 34,260
observations of police use of force.
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Figure 4: Points Moved Into the Census Tract

3.2 Variable Groupings

We created two binary variables, type of force and race, for our k-Groups analysis. The type of force category
included weapon and non-weapon. Non-weapon comprised of acts such as bodily force and maximal restraint
technique while weapon comprised of acts involving an object such as a taser, firearm, baton, chemical
irritant, police K9 bite, improvised weapon, less lethal projectile, and gun point display [Lee et al., 2010].
Our four k-Groups are thus white weapon, white non-weapon, Black weapon, and Black non-weapon. Table
1 displays the counts of the four groups. The race category included white and Black civilians, leaving
out Native American, Asian, Pacific Islander, Other/Mixed Race, Unknown, and Not Recorded. While the
experiences of all races when interacting with police are important, they are also different from one another
and must be separated [Gorsuch and Rho, 2019]. We elected to narrow our focus to include only white and
Black citizens for this project. Figure 5 shows the map of incidents split using the binary race variable,
which takes on values of ‘White‘ and ‘Black‘ respectively.

Weapon Non-weapon Total

White 599 2,253 2,852
Black 1,384 5,291 6,675
Total 1,983 7,544 9,527

Table 1: Count of Use of Force Incidents by k-Groups
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Figure 5: Maps of White vs. Black Civilian Use of Force Incidents

4 Results

The results for testing for CSR and from our application of the methods proposed by Quick et al. [2015] and
Kelling and Haran [2022] are displayed below. We begin by reporting our results from the G and F functions
to motivate a need for spatial modeling. Next, we display our results for the spatial intensity estimates
from both the k-Groups analysis and the Two-Stage analysis. Then, we report our findings from our logistic
regression model from the second stage of the Two-Stage method. Finally we compare the fundamental ways
in which the results differ between the k-Groups method and the Two-Stage method.

4.1 G and F Functions

As discussed in Section 2.1, the G and F Functions are used to assess whether data exhibits CSR, which
justifies a need for spatial modeling. Based on the G and F functions applied to the use of force data,
illustrated in Figure 6, there is evidence against the null hypothesis that the police use of force data follows
CSR towards the alternative that there is spatial clustering. For the G function in Figure 6a, the nearest
neighbor distances between each point are smaller than we would expect to see under the CSR envelope
created by 99 simulated datasets following CSR. For the F function in Figure 6b, the nearest nearest neighbor
distances between an arbitrary point and the police use of force data are larger than we would expect to
see under the CSR envelope created by 99 simulated datasets following CSR, suggesting empty space in the
spatial domain. Because there is evidence against CSR for the police use of force dataset for both the G and
F function, we are motivated to continue with spatial modeling.
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(a) (b)

Figure 6: G and F Functions calculated for the use of force incidents (black line), compared to those generated
under CSR (grey shaded region)

4.2 Intensity Estimation

As discussed in Section 2.3, the intensity function from an LGCP model measures how certain spatial
variables influence the estimated spatial intensity of the event. The k-Groups model divides the data into
k categorical groups based on nonspatial categorical variables, as explained in Section 2.4.1. The estimated
intensity equations for each of the 4 k-Groups are in Equations 12, 13, 14, and 15. The notation WW
corresponds to the white weapon group, WN corresponds to the white non-weapon group, BW correspods
to the Black weapon group, and BN corresponds to the Black non-weapon group.

log(λWW ) = −10.859− 0.0001(TotalPopulation)− 2.792(HHI)− 2.782(UnemploymentRate) (12)

log(λWN ) = −8.811− 0.0003(TotalPopulation)− 3.158(HHI)− 1.500(UnemploymentRate) (13)

log(λBW ) = −11.197 + 0.0001(TotalPopulation)− 4.464(HHI) + 9.268(UnemploymentRate) (14)

log(λBN ) = −6.671− 0.0006(TotalPopulation)− 5.512(HHI) + 7.025(UnemploymentRate) (15)

The estimated 95% credible intervals for each of the 4 groups in the k-Groups model are displayed in
Figure 7. Beginning with total population, we see in the enlarged portion of the graph that all of the
k-groups are estimated to have a negative total population coefficient except for the Black weapon group,
which is somewhat surprising. For HHI, the credible intervals yield negative coefficient estimates for all
groups. Finally, the credible intervals for unemployment rate yield positive coefficient estimates for both
Black groups, while the intervals of both white groups contain 0 and as such we cannot be certain that the
effect of this variable on these groups is nonzero. The exact values for the credible intervals can be found in
Appendix C.
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(a) (b)

Figure 7: Credible Intervals for k-Groups and Two-Stage

The estimated intensity across the spatial domain for each k-Group is plotted in Figure 8. There appears
to be the least variability in intensity estimates in the white weapon group, and the most variability in
intensity estimates in the Black non-weapon group. There are also similar patterns across groups with higher
intensity in parts of Northwest and central Minneapolis, and lower intensity in parts of South, Northeast,
and West central Minneapolis.

The estimated intensity equation for the first stage of the Two-Stage method is shown in Equation 16.

log(λTwo−Stage) = −7.034− 0.0005(TotalPopulation)− 4.128(HHI) + 7.317(UnemploymentRate) (16)

The 95% credible intervals for the Two-Stage estimates - also displayed in Figure 7 - show a negative
coefficient estimate for total population, a negative coefficient estimate for HHI, and a positive coefficient
estimate for unemployment rate. The exact values for the credible intervals can be found in Appendix C.
In comparison to the k-Groups credible interval estimates, the Two-Stage credible intervals tend to end up
being closest to the Black non-weapon group, likely due to the group’s larger proportional representation in
the data.

The estimated intensity is plotted in Figure 9. Similarly to the k-Groups intensity estimates, there is
higher intensity in the Northwest and central regions of Minneapolis, while there is lower intensity in the
South, Northeast, and West central regions of Minneapolis.
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Figure 8: Intensity Estimates Across Groups

Figure 9: Intensity Estimate of All Points
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4.3 Two-Stage Mark Determination

In order to gain insight into the impact of nonspatial variables in the Two-Stage method, we fit a logistic
regression equation using both the spatial variables of interest and the non spatial variables of interest to
model the probability of the force type being a weapon. The estimated equations of the second stage of
the Two-Stage method for both white and Black civilians is shown in Equations 17 and 18, where pW is
the probability that a use of force incident involved a weapon (compared to no weapon) for white civilians,
and pB is the probability that a use of force incident involved a weapon (compared to no weapon) for Black
civilians. In these equations, we see a negative estimate for the effect of total population on the log odds
ratio of a use of force incident involving a weapon for a white civilian while we see a positive estimate for a
Black civilian. For incidents involving either Black or white civilians, the second stage regression equations
estimate a positive effect of both HHI and unemployment rate.

logit(pW ) = −1.03− 0.00007(TotalPopulation) + 0.052(HHI) + 0.126(UnemploymentRate) (17)

logit(pB) = −1.12 + 0.00007(TotalPopulation) + 0.690(HHI) + 0.500(UnemploymentRate) (18)

The confidence intervals for the second stage of the Two-Stage method (the logit portion) are shown in
Table 2. In this table, we see that the regression coefficients are found to be statistically discernible for race,
total population, and an interaction between the two. For both race and total population, the coefficient
estimate is negative, while the estimate for the interaction is positive (where level 0 is equal to white).

Coefficient Confidence Interval

Intercept (-1.55, -0.51)
Race (-1.44, -0.27)
Total Population (-0.0001, -0.00002)
HHI (-0.75, 0.63)
Unemployment Rate (-2.65, 2.74)
Race × (Total Population) (0.00005, 0.0002)
Race × (HHI) (-0.17, 1.45)
Race × (Unemployment Rate) (-2.50, 3.40)

Table 2: Confidence Intervals for Two-Stage Regression

4.4 Comparison of k-Groups vs Two-Stage Model

Both the k-Groups and Two-Stage methods can incorporate nonspatial variables into spatial models, but
each have their strengths and limitations for implementation and inference. From our analysis, the k-Groups
model allows us to directly compare the spatial intensities across categorical nonspatial variables. With these
direct comparisons in the k-Groups model, the analysis allows us to determine how spatial variables affect
the intensity of police use of force incidents across many categorical groups. For example, we can see that the
total population positively impacts the intensity of police use of force incidents involving Black civilians and
a weapon, but negatively impacts the intensity of police use of force incidents involving Black civilians and
no weapon as well as white civilians (involving a weapon or no weapon). However, because the k-Groups
method is not modeling a mark, it is thus limited to analyzing only the spatial intensity. Incorporating
dependence between the k-Groups as described in Appendix A would allow us to further our analysis by
acknowledging that the members of all groups are existing within the same spatial window.

Based on our analysis (where we assumed independence between stages), the Two-Stage analysis only
allows us to determine how the spatial variables affect the spatial intensity of all the points. For example,
we can only say that total population has a negative impact on the intensity of police use of force incidents
without being able to distinguish between intensity estimates for differing races or force types. However,
incorporating dependence between the two stages of the method, as discussed in Appendix A, would allow the
findings from the spatial intensity stage and the mark determination stage to influence each other. Without
dependence, it is not possible for the nonspatial information and spatial intensity to involve each other
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because there is no relationship between the mark and estimated intensity. Unlike the k-Groups method,
the Two-Stage method can model marks at spatial locations. For instance, total population has a positive
effect on the probability that Black civilians are involved in an incident involving a weapon but a negative
affect on the probability that white civilians are involved in an incident involving a weapon.

5 Discussion

The k-Groups method models the intensity of use of force incidents as a function of spatial variables differ-
entiating by groups formed with combinations of categorical nonspatial variables. This method has wider
credible intervals for coefficient estimates, but it is able to take into consideration the differences between
the k categorical groups. The Two-Stage method models (1) the spatial intensity of use of force events
(LGCP) and (2) the probability of our mark (weapon or non-weapon) influenced by a combination of our
nonspatial variables, spatial variables, and their interaction. This method has narrower credible intervals
than the k-Groups method when estimating the intensity, but inherently favors the largest portion of the
location data, Black non-weapon.

The most notable part of our model parameter estimates across the five models is that the estimates differ
in sign for total population. The estimate for the effect of total population on the intensity of use of force
incidents is positive for the “Black, weapon” group, but negative for all other groups in the k-Groups method
as well as the Two-Stage model. This implies that among use of force incidents involving a Black civilian
and a police weapon, higher population is associated with higher incident intensity, while the opposite is
true for all other models. Similarly intriguing are the parameter estimates for unemployment rate: while
negative for both “white” groups, the estimates are positive for both “Black” groups, implying that among
incidents involving a Black civilian, a higher unemployment rate is associated with higher intensity, unlike
incidents involving white civilians. Further, it is important to note that the Two-Stage model agrees more
with the parameter estimates of the “Black” groups, likely due to the higher proportion of Black civilians
involved in use of force incidents. This is one instance where the Two-Stage model may not capture the
nuances that the k-Groups method can using its categorical splits. The consistent negative HHI estimates
in the k-Groups model estimates indicate that that among use of force incidents for all groups, more diverse
census tracts are associated with higher incident intensity after controlling for other variables.

For the first stage of the Two-Stage model with all the points in the dataset, the total population
estimates surprisingly indicate that as total populations increase in census tracts, we expect to see fewer
police use of force incidents after controlling for other variables. Not surprisingly, HHI estimates indicate
that as diversity increases in census tracts, we expect to see more police use of force incidents after controlling
for other variables. Finally, unemployment rate estimates indicate that as unemployment rates increase in
census tracts, we expect to see more police use of force incidents after controlling for other variables.

For the second stage of the Two-Stage model, we modeled the probability of the force type being a weapon
compared to non-weapon based on our spatial and nonspatial variables with logistic regression. We found
that there is a higher probability of the force type being a weapon if the incident involved a Black individual
compared to white individuals after controlling for other variables. Additionally, we found an increase in
total population results in an increase in the probability of the force type being a weapon compared to a
non-weapon for Black individuals holding other variables constant. However, an increase in total population
results in a decrease in the probability of the force type being a weapon for white individuals holding other
variables constant.

5.1 Limitations

There are some limitations with regard to the data we used in this analysis. Beginning with the Minneapolis
Police Use of Force data set, it is important to note that there were missing values present in multiple
variables of interest, such as race or type of force. Next, the methods which were used to privatize the
specific locations of the incidents are unknown, as the Minneapolis Police Department has not made these
details publicly available. As a result, we jitter locations slightly so as to avoid violating assumptions of the
point process model. More broadly, this policing data can be prone to human error; this analysis assumes
that the use of force data is both accurate and reliable, an assumption which would benefit from further
investigation.
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Another concern regarding the policing data is the vagueness and subjectivity with which incidents can
be classified. For instance, the force type variable has factor values such as “bodily force” and “maximal
restraint technique”, which can encompass a wide range of actions taken by an officer. Tied to this issue,
the groups we selected for the k-Groups model were somewhat limited; as mentioned previously, our variable
groupings limit incidents to only those where the civilian was either Black or white, and consolidates force
types into a binary variable. The variables which make up the groups could be expanded upon either by
including more levels at existing variables or including new variables.

Looking to the American Community Survey data, we note that due to the way the HHI is calculated - in
combination with the categorization of “Hispanic” as an ethnicity and not a race - the HHI does not take into
account some aspects of measuring diversity, at least in this specific application. Finally, it could be worth
taking into account population density within census tracts instead of using total population, especially since
some Minneapolis census tracts are smaller in size with a higher population, or some are larger in size with
a smaller population. This could have contributed to the surprising results related to the total population
variable because a higher total population measurement does not necessarily mean that a region has a higher
density of people. Instead, the higher census measurement for total population could just be a result of a
larger census tract.

5.2 Next Steps

Applying these methods to other police use of force data sets would be a logical next step. We looked into
examining use of force for Atlanta, Chicago, and Dallas, but ultimately chose to focus on Minneapolis for
this analysis. In the future, we would be interested to see how the relationship between police use of force
events and nonspatial information varies across cities and jurisdictions. In addition, the inclusion of other
variables - such as resistance type, median census income, or age of civilian - could prove informative.

Incorporating dependence between k-Groups intensity estimates and both parts of the Two-Stage method
would also be important to investigate. When exploring real world applications, including these dependencies
would allow for better fit models. For the k-Groups method, it is important to acknowledge that members
of all k groups influence one another in the same spatial domain. For the Two-Stage method, it is important
to note that the intensity stage and mark determination stage influence one another.

There are a multitude of other potential applications with integrating nonspatial information into spatial
models. One application that has been explored is forest fire data. Kelling and Haran explore this application
in their two stage paper by determining which elements can be helpful in deciding both how much area the
fire burned as well as forest fire location [Kelling and Haran, 2022]. They found that the elements that
influenced location and amount burned were not automatically the same [Kelling and Haran, 2022].

Another potential application is looking at the impact of nonspatial variables on cancer as done by Liang
and Carlin [2008]. In the study, the researchers investigated if variables had different effects on two types of
cancer by parameterizing their results of the bivariate mark model. Kelling and Haran [2022] also anticipate
that the Two-Stage model could be applied to this example as well as many other types of data.

Finally, our application of police use of force incidents did not incorporate time into our analyses. Instead,
the use of force incidents were analyzed as a cross-section from 2018-2023. Future studies could investigate
how the spatial intensity of police use of force incidents change over a temporal domain.

Appendix A Incorporating Dependence

Quick et al. [2015] discusses how one might incorporate dependence between k-Groups into the model.
They assert that one option is to specify wλ = (w′

λ|1, ..., w
′
λ|k)

′ such that Cov(wλ) = Ψλ ⊗ Cλ, with Ψλ

representing covariance between surfaces and Cλ for spatial association [Quick et al., 2015]. Incorporating
dependence leads to some computational challenges, but expands the types of questions the model can
answer Quick et al. [2015]. For instance, the dependence incorporated in Quick et al. [2015] allows range
parameters to vary and be estimated using the MCMC process, which could result in more accurate intensity
estimates. Additionally, including a correlation between each of the k-Groups intensity surfaces accounts for
the coexistence of members of all k groups in the same spatial domain W .
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Kelling and Haran [2022] also discuss how to incorporate dependence between both stages of the proposed
Two-Stage model. This would include two individual Gaussian Processes, one in each stage of the model. It
also includes a cross-covariance structure to incorporate dependence between the two Gaussian Processes.
The cross-covariance matrix of the bivariate Gaussian Process has dimension 2n x 2n (n is the number of
points) and consists of both a univariate exponential correlation function as defined in Equation 19 (similar
to Equation 5), as well as a matrix Λ defined in Equation 20. In the matrix Λ, if |ρ| is close to 1, there would
be strong dependence, and if |ρ| is close to 0, there would be weak dependence. The full cross covariance
matrix would be ΣijΛ.

Σij = cov(ω(si), ω(sj)) = exp

Å−|si − sj |
ϕ

ã
(19)

Λ =

ï
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

ò
(20)

Incorporating a bivariate GP is beneficial because it can produce a better fit model than when we assumed
independence between the stages. It can introduce dependence in the spatial structure that determines where
points occur and the mark at those locations. With a bivariate GP, one can interpret ρ; how close ρ is to 0
will indicate the strength of dependence between the two stages. The sign of ρ will indicate whether there
is a positive or negative spatial structure in variables unaccounted for between the first and second stages.

Appendix B Choosing Integration Points and Knots

We chose the integration points for our application such that each census tract has random points generated
with an amount proportional to its size. When estimating the integral with the integration points, we want
each census tract to have some integration points, and we want the bigger census tracts to have more points
than smaller census tracts. This will best find the average intensity over the region W . Overall, we used
9,999 integration points.

In terms of how we chose the knots, we used a grid format with 1,000 points evenly spaced across the
window. We chose fewer knots compared to integration points due to the larger computational load involved
with a larger number of knots. Also, because we use lower resolution points to estimate the Gaussian Process,
a grid suffices.

Figure 10: Integration Points and Knots
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Appendix C Exact Credible Intervals

Group Intercept Total Population HHI Unemployment
Rate

White, Weapon (-11.370,-10.338) (-.0002,-.00003) (-3.4106, -2.1829) (-6.2466,0.4942)
White, Non-weapon (-9.1413, -8.4730) (-0.0004, -0.0003) (-3.5575, -2.7584) (-3.5801, 0.5093)
Black, Weapon (-11.623,-10.750) (.00008,.0002) (-4.9564, -3.9859) (7.0858,11.3477)
Black, Non-weapon (-6.9335,-6.4117) (-0.0007,-0.0006) (-5.8422,-5.1841) (5.8140,8.3209)
Two Stage (LGCP) (-7.2360,-6.8273) (-0.0005,-0.00045) (-4.3548, -3.9041) (6.2855,8.2858)

Table 3: Credible Intervals for k-Groups and Two-Stage

References

Sudipto Banerjee, Alan E Gelfand, Andrew O Finley, and Huiyan Sang. Gaussian predictive process models
for large spatial data sets. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70
(4):825–848, 2008.
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